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Sequential approximate optimization (SAO) is a class of methods available for the multidisciplinary design op-
timization of complex systems that are composed of several disciplines coupled together. One of the approaches
used for SAO is based on a quadratic response surface approximation, where zero- and first-order information are
required at the current design. In this method, designers must generate and query a database of order O(n2) to com-
pute the second-order terms of the quadratic response surface approximation. As the number of design variables
grows, the computational cost of generating the required database becomes a concern. An adaptive experimental
design (AED) approach that requires just O(n) parameters for constructing a second-order approximationis pre-
sented. This is accomplished by transforming the matrix of second-order terms into the canonical form. The AED
method periodically requires an order O(n?) update of the second-order approximation to maintain accuracy.
Results show that the proposed approach dramatically reduces the total number of calls to the simulation tools

during the SAO process.

Nomenclature

objective function
approximationto f near x*
inequality constraint vector

ith inequality constraint
approximation to g near x*

Hessian matrix of ()

penalty parameter

orthogonal eigenvector matrix
transformed design space

vector of design variables

current design point at kth iteration
trust region radius

vector of Lagrange multipliers
trust region ratio

augmented Lagrangian function
alternative form for inequality constraint g;
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I. Introduction

PPLYING nonlinear optimization strategies directly to com-
plex multidisciplinary systems can be prohibitive when the
complexity of the simulation codes is large. Increasingly, response
surface approximations (RSAs), or surrogate functions, are being
integrated with nonlinear optimizers to reduce the CPU time re-
quired for the optimization of complex multidisciplinary systems.
RSAs provide a computationally inexpensive lower-fidelity repre-
sentation of the system performance.
Two trends have emerged when integrating RSAs within nonlin-
ear optimization tools: 1) the use of global approximations, where
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an RSA over the entire design space is developed, and 2) the use
of local approximations, where RSAs are built within a local re-
gion around the current design. In general, a single optimization
is performed when employing global approximations. The cost of
developinga good global RSA is obviously higher than for local ap-
proximations because a more complex model is required to mimic
the system. When using local RSAs, a sequential approximate opti-
mization (SAO) methodology can be used. In SAO, the design space
is sampled around each design iterate to generate the database re-
quired for constructing a low-order polynomial using regression
analysis.!

The authors have investigated two different approaches for sam-
pling the design space in SAO frameworks. The first is an optimiza-
tion based sampling, which has roots in the original concurrentsub-
space optimization (CSSO) algorithm of Sobieszczanski-Sobieski.?
It was later modified for RSA optimization (CSSO-RS) by Renaud
and Gabriele* and Wujek et al.’ and expanded to a formal frame-
work for trust region model management by Rodriguezet al.f In this
approach, each of the disciplines perform an optimizationsubjectto
move limits. The required inputs from other systems are computed
by linear approximations.The design points visited through the sub-
space optimizationsare stored and serve as the database for the RSA
construction. The other approach is a statistically based sampling
using design of experiments (DOE) arrays as reported by Rodriguez
etal.”® Ateach SAQ iteration, a set of design points is selected for
sampling using a DOE array. The design points are evaluated using
the local disciplinary design tools, where linear approximationsare
used for the nonlocal input states. The resulting database is used
to build an RSA. Many other research studies have combined DOE
techniques and RSA for optimization’~!3

Rodriguez et al.® performed a comparison between the
optimization-based data generation (CSSO-RS) and a statistical
based DOE approach using orthogonal arrays (OA). Results of that
study show that, whereas low-strength OAs seem to perform well
compared to the CSSO-RS approach, the CSSO-RS approach is
still more robust in driving the optimization. An attempt to over-
come the natural advantages of the optimization-based sampling
was investigated in Pérez et al.'* In the Pérez et al. study, the
DOE-based sampling strategy was modified by projecting the OAs
onto the linearized descent feasible region. There is evidence that
the RSA constructed with such a database provides a better ap-
proximation of the system when constrained optimization is per-
formed. One common goal of these studies is the reduction of
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computational cost when an optimization problem is solved using
SAO.

In the SAO implementation studied by the authors, a quadratic
function is computed at each iteration to mimic the response of the
system. The main drawback of using SAO for problems with more
than a few design variables is that the size of the database required
to compute the coefficients of the polynomial grows quadratically
with the number of design variables. In this paper, a methodology is
presentedthat requires the user to perform a much smaller sampling
at each iteration by fitting a reduced model during some iterations.
The methodology has been named adaptive experimental design
(AED).

The organization of the paper is as follows: In Sec. II, the basics
of SAO are presented. Section III describes in detail the proposed
methodology. A full description of the algorithm is presented in
Sec. IV. Test problems and their correspondingresults are presented
in Sec. V and concluding remarks in Sec. VI.

II. SAO

The SAO framework solves a constrained optimization problem
of the following form:

Minimize
Fx) (1a)

subject to
gx) =0 (1b)
h(x)=0 (1o
Xmin < X = Xmax (1d)

The main idea of the SAO is to build simple RSAs of the objec-
tive function and constraints, valid for a local region. An optimiza-
tion is performed over this approximation within the local limits.
The approximation is updated every iteration until convergence is
achieved.

The algorithm begins at iteration k = 0 with a starting point x*.
The objective function, constraints, and their gradients are evalu-
ated in the design characterizationstep. Then local move limits are
defined. The move limits define the region where the approximation
will be valid. Within these move limits, a database is constructed.
Once an RSA is constructed using the information in the database,
an optimization is performed with the approximations. The new
candidate point is evaluated and either accepted or rejected based
on a trust region test. After this, new move limits are set, and the
optimization proceeds. A flowchart of the general SAO is shown in
Fig. 1.

In the SAO strategies of Wujek and Renaud!>!'® and Rodriguez
et al.%” which were modified for DOE-based sampling by
Rodriguez et al., Pérez et al.,'* and Pérez and Renaud,!” the frame-
work constructs second-order RSAs of the objective function and
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Fig.1 SAO algorithm.

constraints within a local trust region. The approximationsare con-
structed using exact first-order information at the current design
point. Therefore, the work of constructing a response surface (RS)
involves only the fitting of the second-order terms, which are re-
ferred to as the Hessian-RS matrix H, or simply the Hessian.

Alexandrov et al.'® proved the convergence of a SAO framework
in which the move limits are managed by a trust region approach,
and the local approximation matches the function and the gradient
at the current design point. The trust region augmented Lagrangian
framework implemented in this study has these characteristics and
has been proven to converge by Rodriguez et al.® This framework
uses an augmented Lagrangian approach for driving the optimiza-
tion and a trust region methodology to manage the move limits.

In the present research, the trust region augmented Lagrangian
framework of Rodriguez et al.5 is implemented. A more detailed
descriptionof the RSA, the trust region approach, and the database
generation used in this study is presented in the following sections.

A. RSA
The quadratic function approximationused in the framework for
f at the kth iteration is given by

i@ = f68) + VN Ax* + L AxHE Ax* )

where Ax* =x — x*. Both f (x*) and V f(x*) are known, and only
the second-orderinformationH’;. is computed using a response sur-
face approach. Gradient information can be obtained in analytical
formprovidedby the user, or computed via finite differencesorusing
the global sensitivity equations!” in the case of a multidisciplinary
design optimization (MDO) problem.

Note here the difference between the true Hessian of the func-
tion and the Hessian-RS of the approximation f*, denoted here as
H’;.. The true Hessian is the second-order information evaluated at
a given design point, in this case x*. The Hessian-RS, or simply
Hessian, as it is referred to in this paper, is the Hessian matrix of
a quadratic approximation of the function in the local region. The
true Hessian is never computed nor used in this SAO framework. It
is too expensive to compute by finite differences and assumed to be
difficult to obtain in analytical form. Whenever Hessian is used in
this paper, it refers to the matrix of second-order coefficients in the
quadratic approximation.

The total number of coefficients in a full second-order model
is 1 +n+n(n+ 1)/2. However, in the quadratic model considered
here, zero- and first-order information are known; therefore, the
number of coefficients in H’;. is n(n+1)/2, where n is the num-
ber of design variables in the problem. The minimum size of the
database required to compute the approximate model (2) is, there-
fore, n(n + 1)/2 or O(n?) in general terms. The coefficients in the
Hessian matrix are computed using the least-squares method.

The least-squares method assumes an independentand normally
distributed error in the model to be fitted. This is debatably true
for computer experiments. Sacks et al.?% points out that in the ab-
sence of independentrandom errors, the rationale for least-squares
fitting of an RS is not clear. However, he also indicates that least
squares can be viewed as curve fitting. Simpson et al.'* also under-
lines that, in deterministic computer experiments, the model should
interpolate and not smooth along the data points. However, in real-
istic MDO applications, the analysis values are, in fact, noisy, and
so least-squares fitting is more appropriate than interpolation. In
this particular application, the quadratic model is used in the curve
fitting sense, within a local region controlled by the trust region
methodology. The general trend is captured by the approximation.
When approachingconvergence,the trust region method guarantees
the adequacy of the quadratic model by shrinking the move limits.
Furthermore, if variable fidelity data are used,® smoothing along
the data points is a necessity. Other methods have been proposed
to compute the coefficients of an RS, such as the minimum bias
estimation method (see Myers and Montgomery').

B. Trust Region Methodology
The trust region approach!>!1%18:21=23 jg based on the use of a
trust region ratio p to monitor how well the current approximation
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is found to represent the actual design space. Consider an uncon-
strained optimization problem in which ¢* is an approximation to
the function ¢ around the pointx* at the kth iteration. The move lim-
its are defined by the region [x —x*||, < A* and the p norm defines
the shape of the region. 4" is known as the trust region radius.

The minimization of ¢* subject to the defined trust region gives
a new candidate point x**!. The trust region ratio p is computed
based on the information of the new candidate point:

k k1
k — Lq&(x*) 3)
¢t — g (xi ")

The quantity p is simply the ratio of the actual change in the function
to the change predicted by the approximation. The closer the value
of p is to one, the better the approximation ¢* mimics the behavior
in the descent direction of ¢. The approximate minimization forces
Tk (k1 Tk (yk : o i ; :
P'x,T)=<¢ (J{ ). A negative p indicates a poor approximation,
and the new point does not decrease the function; therefore, the
point is rejected and the trust region radius reduced. If the value
of p is greater than zero, the point is kept: x ! =x*+1. The trust
region radius A is updated according to the following rules:

c  A* if X <R,
AL =L o, AF if >R,
A otherwise )

Typical values for the limiting range constants are Ry =0.25 and
R, =0.75. The trust region multiplicationfactors ¢, and ¢, are com-
monly set to be 0.25 and 2, respectively.

C. Database Generation

In SAO, atevery iteration a new databaseis computed. The points
to be evaluated can be generated using an optimization based sam-
pling as in Refs. 4, 6, 15, and 16 or using more traditional DOE
strategies as in Refs. 7, 8, 14, and 17. Each design point that is sam-
pled can be evaluated by computing the system analysis (SA). In
the case of multidisciplinaryoptimization problems, one could sam-
ple the linearly decoupled simulation codes or contributinganalysis
(CAs), as in Refs. 8 and 14, generating variable fidelity data.

Several techniques have been developed to sample the design
space and generate an RSA efficiently. Among the common tech-
niques to generate an experimental design are the traditional DOE
arrays, such as full factorial experiments (FF), central composite de-
signs (CCD), fractional factorials,! Latin hypercubes and their ex-
tensions (see, forexample, McKay etal.>* and Tang®), and OAs.2%?
Some quality improvement computations such as D-optimality*3%
are too large or too complex for an SAO framework. OAs are an
excellent choice for computer experiments because they are easy
to generate. Owen?® has compiled a suite of programs to gener-
ate a broad class of OAs for differentlevels and numbers of design
variables. In the constructionof RSAs for MDO, one importantcon-
sideration is the dimensionality of the problem, where large prob-
lems may impose the curse of dimensionality. Small problems can
be easily dealt with by traditional sampling techniques (FF, CCD).
However, as the number of variables increases, the size of the sam-
pling does too. In the case of a second-order RSA, the number of
the parameters to be fitted is O(n?). FF and CCD generate design
arrays with O(2"), whereas some OAs have O(n?) or even O(n). In
this paper, OAs have been chosen as experimental arrays.

III. AED

The most important difference, from an experimental point of
view, between traditional laboratory experiments and the compu-
tational experiments embedded in SAO, is that in the latter the
experiment is repeated several times at different locations, up to
convergenceor stopping of the algorithm. At each new iteration, a
new sampling is performed of the same system, but in a new sam-
pling region. However, at each new iteration one is not completely
blind to the behavior of the system because the earlier information
aboutthe nature of the RS, and the fitted coefficients of the preceding
local approximation, are available. Because of the highly nonlinear
nature of MDO problems, the design space is not expected to have

the same response from the starting sampling region to the final one,
and, therefore, the performance of a fixed experimental array may
vary through the process. This was acknowledgedin the research of
Rodriguez et al.,> where the OAs were randomized to avoid having
a fixed experimental array not capturing the true interactions of the
design variables.

The main drawback for SAO is the size of the database required
to construct the quadratic approximation. The number of para-
meters needed to fit a full second-order approximation is O(n?).
This problem is referred to as the aforementioned curse of dimen-
sionality. An AED that takes advantage of the information from the
precedinglocal approximation to modify the size of the experimen-
tal array required for the next sampling appears to hold promise for
improving the efficiency of SAO algorithms. In this paper, infor-
mation already available from the preceding approximationis used
to reduce the size of the data required to construct a full quadratic
model, while maintaining the quality of the approximation. As a
result, the total cost of the optimization is reduced.

A reductionin the cost of the optimization can be obtainedif, for
some iterations, instead of an O(n?) sampling, only an O(n) sam-
pling is performed. This can be done by neglecting the off-diagonal
terms in the Hessian matrix H’;.. Although this certainly reduces the
order of data to be queried to O(n), the quality of the approxima-
tion might decrease considerably. These neglected terms could be
an important componentof the second-orderinformation,and, thus,
it would end up being a poor representationof the system response.

A differentapproachis proposedin this paper. Once the full matrix
of second-ordertermsis approximatedfora givendesignpoint,itcan
be transformedinto its canonical form. In the canonical coordinates,
the off-diagonalcomponents of the Hessian vanish. Once the canon-
ical transformationmatrix has been found, it can be assumed, at least
for some number of iterations, that the curvature of the function will
be invariant, and so the transformationmatrix is kept. In the next it-
erations, in the transformed design space, only the main diagonal of
the second-ordermatrix is fitted [O(n) sampling]. As a result, back
in the original space, a full matrix is obtained. The transformation
matrix can be kept as long as the curvature of the function does not
change too much. In that case, the full matrix of second-orderterms
has to be updated, and a new transformation matrix is computed.
This technique is referred to as the AED mentioned earlier.

In the following section, a detailed description of the AED ap-
proach is presented.

A. Proposed Methodology

Let us assume that a single function f is being approximated.
The quadratic approximation at the kth iteration is represented by
Eq. (12). The matrix of second-order terms H’;. is symmetric and,
hence, similar to a real diagonal matrix via an orthogonal transfor-
mation matrix, whose columns are orthonormal eigenvectors. The
eigenvalue decomposition of the Hessian matrix is defined as

k _ yrkpk gk T
H' = US\D" U 5)

The matrix of normalizedeigenvectors U* defines a change of coor-
dinates, whereas the diagonal matrix of real eigenvalues D*. defines
the magnitude of the curvature along the new coordinate directions.
This transformation and its significance is illustrated in Fig. 2.

With U’;. as the transformationmatrix, the design variablesx can
be transformed to the canonical variables x;;. The canonical form
of the quadratic approximationis

foeeo) = fu(xh) + V£I () Axh, + LaxS "D Ax, (6)

where
X = U ¥ (7)

Axt = x, — X, 8)

foey) = £ (Usxy) )

Vfy@y) = ULV f(x) (10)
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Fig.2 Transformation to canonical form.

Now assume that a full Hessian is known for a preceding nearby
iterations, s < k. Its correspondingeigenvector matrix is U, . If the
points x* and x* are close enough, it is safe to assume that U’;. and
Uj. are similar. Therefore, to compute the Hessian matrix H:, one
need only calculate the eigenvalue matrixD’;. by samplingthe design
space with an O(n) experimental array. This experimental array is
sampledin the original space. Then the databaseis transformedto the
canonical space U°, where the eigenvalue matrix D’;. is computed.
Finally, a backtransformationreturns the new full Hessian matrix in
the original space:

T
H', = U,D\U;, (11)

The eigenvectormatrix U®, can be used for several iterations. If at
any point the approximation is bad, then a new eigenvector matrix
is computed. This is done by constructing a full Hessian using an
O(n?) experimental array (EA). In this paper, the criterion for a bad
approximation is a failure in the trust region test as described in
Sec. II.B. The trust region test fails when the new candidate point
increases the value of the function. The bad approximation can be
aresult of a trust region being too large or a bad model. Therefore,
a trust region reduction plus a transformation matrix update have to
be performed.

In summary, the user requires two EAs one with [, >n(n+1)/2
[O(n?)] design points and one with [, > n[O(n)] design points. At
the first iteration, the local design space defined by the trust re-
gion is sampled using the O(n?) EA. A full Hessian is approxi-
mated and its eigenvector matrix stored. For subsequentiterations
the local design space is sampled using the O(n) EA. By the use
of the AED technique described earlier, a full Hessian matrix can
be approximated. When the trust region test fails (o* <0), then
the algorithm resets the transformation matrix by sampling the
O(n?) EA.

B. Practical Implementation

In MDQ, it is common to have several constraints in the for-
mulation of a problem. The objective function and the constraints
are often functions of the outputs of coupled simulation codes, and,
thus,RSAs are used to approximatethem. A directapplicationof the
methodology just described, in a problem with m constraints, im-
plies that m + 1 least-squares estimations would have to be solved.
For each function, an eigenvalue decomposition of its Hessian ma-
trix, an individual database transformation,and a least-squaresesti-
mation would haveto be performed. We refer to this as the individual
transformation (IT) method.

It is common in SAO frameworks for the optimization to be per-
formed over an unconstrainedaugmented Lagrangian, with variable
bounds. In this case, one need only approximate the augmented
Lagrangian, and, therefore, only a single transformation matrix is
required. This method, referred to as the cumulative Hessian ap-
proach, requires that the Hessian of the augmented Lagrangian be
derived from the functions approximations.

In the SAO framework employed in this research, the objective
function and each of the constraints are approximated by second-

order Taylor series. Define the approximate objective function and
constraintsby

fra)y = e + Vi Ak + LA B A (12)
gl = g (") + Vg, M Ax* + LA HE AXt (13)

To simplify the derivation, only inequality constraints are included
in this paper; however, the extension to include equality constrains
is straightforward. The approximate augmented Lagrangian is

f = X4 AT 4 PP (14)
where
F = min[gF, —20./r)] (15)

is provably continuously differentiable (C'). We are interested in
the matrix of second-orderterms H’é in the Taylor series expansion

of *:
O (x) = DF () + VO ()T Ax* + L AxtT HE Axt + O (| Ax*|°)
(16)
The reader should keep in mind that Hessian coefficients are esti-
mated using RS techniques that fit the second-order response over

the entire trust region. Substituting Eqs. (12) and (13) into Eq. (14)
and matching the order of the terms, one obtains

k _ gk k AV LT
H, —H/.—i—Z)H-H@’_—i—Zr Z(ny[ v +\IJ[H@,_> (17)

Note that the expression for H’é contains both first- and second-
order terms. The first- and second- order terms can be combined
into single terms

ko gk A k B
H, =1+ HY (1)
where
B =2r Y VUV (19)
5 5
HY = HS+ ) (b +2rU0)HY (20)

Hk is known because it is computed by first-order informa-
tion only, which is already available. The matrix H’; is a linear
combination of the objective function and constraint Hessians. If
the eigenvector matrix of H’é is known, there is no need to com-
pute the individual off-diagonal terms of the objective function and
constraints. They will cancel with each other in the transformed
space. Therefore, one can use the eigenvector matrix U’. ® of H;B
as a unique transformationmatrix. Then fit in the transformed space
the main diagonals of all of the Hessian matrices of f and g as de-
scribed in Sec. III.A. This approachis called the cumulative Hessian
(CH) method. .

Note that although the function W} is not C2, one can assume, in
practice, that for an active constraint g; < —2A,/r and Hk —H’g,,_,
and, for an inactive constraint, Hk =0.

IV. Algorithm Description

The modified SAO using the AED methodology proposedis pre-
sented in Fig. 3. For simplicity, the algorithm mentions a single
function to be approximated; however, it is equally applicable to a
fully constrained problem using one of the techniques described in
Sec. IIL.B.

Given a starting point x°, set k := 0:

1) Compute f(x*) and V f (x*).

2) Initialize the trust region.

3) Sample the local design space using an O(n?) EA.
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Fig.3 SAO with AED.

4) Compute an approximation for the full Hessian matrix H*.

5) Compute the transformation matrix U’;. as in Eq. (5).
Sets :=k.

6) Optimize the approximate augmented Lagrangian within the
local trust region. Find a new candidate pointx* *!.

7) Compute f(x*+!) and V f(xt*1).

8) Compute the trust region ratio p.

9) If p <0, go to 10; otherwise, go to 11.

10) Rejectx* ™!, update the trust region according to Eq. (4), and
go to 3.

11) Setx**!:=x**'and k :=k + 1.

12) If algorithm convergence is achieved, stop; otherwise con-
tinue.

13) Update the trust region according to Eq. (4).

14) Sample the local design space using the O(n) experimental
design.

15) By the use of U?, transform the database and the gradient
information according to Eqs. (7) and (10).

16) In the transformed space(s) {/*, compute the diagonal matrix
D’;. using the least-squares methodology.

17) Transform the diagonal Hessian approximationD’;. backtoa
full Hessian matrix H’;. using Eq. (11).

18) Update the r and A; in Eq. (14) as in Refs. 6 and 7, and go
to 6.

V. Test Problems

To demonstrate the application of the decomposition technique
within a SAO framework, three problems are shown. First a sim-
ple two-dimensional unconstrained problem is tested. Next, a two-
dimensional constrained mathematical problem is tested. Finally,
the strategy is applied to a two-discipline MDO test problem with
11 design variables. The complete implementation of the algorithm
and test problems was done in MATLAB®. MATLAB’s SQP opti-
mizer was used to perform the approximate minimization at each
iteration.

A. Optimization of an Unconstrained Function

A simple unconstrainedminimization problemin two dimensions
is used to show how dramatic the results can be:

Minimize
f(x) =3+ (x; —40) +2(x, — 40) + 0.75(x; — 40)>

+0.75(x, — 40)* 4 0.5(x; — 40)(x, — 40) +0.002x7x, (21)

The optimum is located in x* = (36.2564,38.1618). A simple SAO,
with a fixed trust region radius, was performed using three methods

to build the Hessian approximation: a full Hessian fit, the trans-
formation method stated earlier, and fitting just the main diagonal
without transformation. In the first two cases, the optimum was
located in three iterations, starting from a nearby point. However,
when fitting just the main diagonal, the algorithm required nine iter-
ations to reach the optimum with a tolerance of 0.01. With a smaller
tolerance (0.0001) it required more than 300 iterations to converge
as compared to three for the full Hessian and the transformation
method investigated in this paper.

Although actual engineering problems are more complex and
restrictive than this unconstrained problem, it does illustrate the
potential of the proposed method. The additional examples given
hereafter represent more complex constrained problems that are
closer to real engineering problems.

B. Barnes Problem

This is a purely artificial, two-dimensional problem originally
formulated in Ref. 30. This problem was chosen because it is a
highlynonlineartwo-design variableproblem. The problemis stated
as follows:

Minimize

f@,y) =a +axx, +azy.x; + Hsyf + agxy + azyy + agx,y;
+agy1ys + ay2ys +anys +apxys + a13y32

+tau/(xs+ 1) +aisysys + a1 yaXz + ayyiysya

+aigx;ys + apyys + axpe"”! (22a)

subjectto

&1 =x/700—1=0, g2=x2/5—y4/25220

g =(ys — 1)* = (x;/500 - 0.11) > 0

0.0 < x, <75.0, 0.0 <x, <650 (22b)
where the coefficients a are constants given in Table Al in the
Appendix. The states y are calculated by the CAs as follows: For
CA,

2

Y1 = XX, Y3 =X,

for CA,
ys = x2/50

2
Y2 = YiX, Ya = Xy,

Figure 4 is a plot of the constraints and objective function contours.

1. Implementation Details
Two iterations of SAO were performed starting from several de-
sign points. In the first iteration, a full Hessian was fitted for the

80 -
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Fig.4 Contours of f and g; for the Barnes problem.
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objective function and for each of the constraints. A new candidate
point was found by solving a minimization over the approximate
augmented Lagrangian.

In the second iteration, a new database was generated around the
current design point. With this database, the Hessian matrix was
computed using the following methods:

1) Estimate the full Hessian matrix (FH).

2) Estimate only the main diagonal (MD) terms of the Hessian
without transformationsin the original design space.

3) Estimate the MD in the transformed space.

a) Use one transformation matrix for each individual function
involved (IT). The Hessian of each functionis estimated in its trans-
formed space.

b) Use one transformation matrix from the CH of the La-
grangian. The eigenvector matrix of the CH as in Eq. (20) is used to
transform the design space. The MDs of each Hessian are computed
in this transformed design space.

Once the Hessian information was estimated, an optimization
was performed using each of the four approximations computed.
The database for all approximations was generated by sampling
with a 9-point, 3-level, FF array. The database was queried within
the limits of the local variable bounds defined as a fraction of the
whole design space by the trust region radius A.

To estimate the error of each approximation,a new database was
queried. The mean square error (MSE) of what was computing by
comparing the real value of the augmented Lagrangian to that ob-
tained by the approximations[Eq. (14)].

2. Results for the Barnes Problem

The results for two initial design points are given in this section.
The first run started with point P; = (7, 35), which is an infeasible
starting point that violates constraint 1. The sampling and optimiza-
tion were performed with a trust region radius of A =0.1. Table 1
summarizes the results for each strategy used to fit the Hessian. In
SAO, the optimizationis performed with the augmented Lagrangian;
therefore, the results are focused on the ability to capture the value
of the Hessian matrix of the cumulative augmented Lagrangian as
in Eq. (20).

The first three columns denote the Hessian terms of the cumu-
lative augmented Lagrangian: xlz, x%, and x;x,. We can see that,
whereas the MD approach perfectly fits the x?, x7 terms, the cross
term is not captured, although it has a somewhat negligible value.
The individual transformation and the CH strategies capture, with
an acceptable accuracy, the MD and off-diagonal terms. The small
discrepancy in the results between the IT and the CH methods are
due to the constraint violation; however, the differenceis not signif-
icant. The next two columns show the final result for the two-step
optimization: x{, x3. The final design is the same in all cases. When
comparing the MSE of the four RSAs, it can be seen that the MD ap-
proach generates a greater error (10 times greater) than those of the
individual transformation and the CH transformation. The magni-
tude of the MSE for the two transformation methods is comparable
to that of the FH fit.

In the next run, the size of the trust region radius was increased to
A =0.3, and the same starting point was used. Figure 5 shows the
shape contours of the original augmented Lagrangian and the four
approximations. We can see that a slight change in shape is found
in the MD approach; however, the minimum for the five plots is
located in the lower right corner [x* = (18.625,24.925)] of Fig. 5.

Results for the Hessian terms are found in Table 2. The maxi-
mum difference in Hessian terms is found in the off-diagonal terms
because the MD approach does not compute them. The MSE shows
a very small difference between the FH, IT, and CH. The MSE for

Table1 Point(7,35), A =0.1

Method )cl2 x% X1X2 Xy x5 MSE

FH 0.1141 —0.0112 0.0254 11.125 31.425 1.2615¢-3
MD 0.1141 —-0.0112 0 11.125 31.425 1.4201le-2
1T 0.1145 —0.0118 0.0251 11.125 31.425 1.2631e-3
CH 0.1145 —0.0117 0.0251 11.125 31.425 1.3205¢—3

Table2 Point(7,35), A=0.3

Method )cl2 x% X1X2 Xy x5 MSE
FH 0.1143  —0.0095 0.0282 18.625 24925 0.8933
MD 0.1143  —0.0095 0 18.625 24925 2.0462
1T 0.1173  —0.0138 0.0261 18.625 24.925 0.8989

CH 0.1172 —0.0137 0.0261 18.625 24.925 0.9115
Table3 Point (45, 20), A =0.1

Method )cl2 x% X1X2 xy x5 MSE

FH —0.0318 0.1549 0.0262 49.125 16.425 9.3201e—04

MD —0.0318 0.1549 0 49.125 16.425 1.3077¢—02

1T —0.0316 0.1546 0.0264 49.125 16.425 9.3323¢e—04

CH —0.0316 0.1546 0.0264 49.125 16.425 9.3323¢e—04

Current vafue Full Hessian

individual transformation ~ Cum. Hess. transformation

4 eT 77
I i,’

/
1

Fig. 6 Controls-augmented structure.

the MD approach is more than twice the value of the other three.
However, the four strategies end up at the same optimum.

The second point evaluated is P, = (45, 20), which is located
near the global optimum. A trust regionradius of A =0.1 is usedin
the same two-iteration study. At this design point, no constraint is
violated, but it is close to the feasible design boundaries of g; and
g,. Results for this pointare shown in Table 3. Results for IT and CH
are the same because no constraintis being violated and, therefore,
the augmented Lagrangian is reduced to the objective function. (We
are performing a two-step SAO. The Lagrangian multipliers are
initialized to zero.) The MSE for the MD strategy is two orders
of magnitude greater than the other three approaches; however, the
optimum with respect to the local variable bounds is found to be the
same for each of the approximations.

C. Controls-Augmented Structure

In thissection,an engineeringdesignoptimizationproblemcalled
the controls-augmented structure (CAS) is detailed. This problem
introduces more complexity with more design variables, more con-
straints, and a fully coupled SA. One important feature of this prob-
lemis thatthe dataused to constructthe RSAs come fromthe linearly
decoupled subsystems (CAs), instead of the costly SA.

The CAS design problem shown in Fig. 6 was first introduced
by Sobieszczanski-Sobieski et al.>! The problem contains a total of
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11 design variables and 43 states. The physical problem consists
of a cantilever beam subjected to static loads along the beam and
to a dynamic excitation force applied at the free end. Two sets of
actuators are placed at the free end of the beam to control both the
lateral and rotational displacement.

The SA comprises two fully coupled CAs. The structuressubsys-
tem CA, consists of a finite element model of the beam where the
natural frequenciesand modes of the cantileverbeam are computed.
CA, requires, in addition to the characteristics of the beam, the
weight of the control system as input. The weight of the control
system is calculated in the controls subsystem CA.. The weight of
the control system is a function of the dynamic displacements and
rotations of the free end of the beam. These dynamic displacements
and rotations are functions of the natural frequenciesand modes ob-
tained in the structures CA, thus subjecting these CAs to coupling.

The objective of the optimization is to minimize the total weight
of the system W,, comprising the weight of the beam W; plus the
weight of the control system W,. The minimization is subject to
seven constraints on the static stresses o; static lateral and rota-
tional displacements, d; and d,, respectively; the first two natural
frequencies w, and w;; and dynamic lateral and rotational displace-
ments at the free end of the beam, dy and dg,, respectively. The
problem is posed as follows:

Minimize

W, =W, + W
subjectto

gl=1—dl/dl[,20, g2=1_dr/dn,20
g4=a)2/a)2[,—120
g(::l_ddl/ddln >0

g1 =1 _ddr/ddra >0

g3=w1/w10—120,

g5=1_0/0a20,

1. Implementation Details

The trust region augmented Lagrangian framework for SAO de-
veloped by Rodriguez et al.%” was implemented. The RSAs were
constructed with medium-fidelity information queried by OAs of
strength two.® This means that the sampling is performed over the
decoupled CAs instead of sampling the costly SA. At the begin-
ning of the optimization, FH approximations of the functions were
computed. Transformation matrices were then computed for each
of the decompositionstrategiesdescribed earlier, thatis, IT and CH.
When a negative trust region ratio was encountered, an FH update
was performed.

The problem has 11 design variables and, therefore, 66 Hessian
terms. When an FH update was required, an OA with 128 points,
8 levels,and strength2 was used. When only the 11 MD components
were computed (either in the transformed or nontransformedspace)
smaller OAs were implemented. To asses the impact of the number
of design points in the array, four OAs with an increasingnumber of
design points were implemented: OA(27, 13, 3,2), 27 design points,
13 design variables (2 were cut), 3 levels, strength 2; OA(36, 13,
3, 2), 36 design points, 13 design variables (2 were cut), 3 levels,
strength 2; OA(50, 11, 5, 2), 50 design points, 11 design variables,
5 levels, strength 2, and the same OA(128, 11, 8, 2) used for the
FH approximation. Note that an OA with more design variables
than needed can be used because OAs keep their properties when
factors are removed. In this case, a 13-design-variable OA is used
to make an 11-design-variablearray by ignoring two of its columns.
[OA(27, 13, 3, 2), OA(36, 13, 3, 2), and OA(50, 11, 5, 2) can be
found in Ref. 27. OA(128, 11, 8, 2) were generated using software
by Owen.?]

As described by Owen,?® one can randomize an OA to have dif-
ferent EAs. In this study, to avoid bias due to a particular EA from
the randomization of the OAs, 10 runs were performed for each
strategy and each OA. The results shown correspond to the average
results of the 10 runs.

2. Results for the CAS Problem
The optimization was performed starting from two different
points. The first is a feasible design X, = (10.0, 10.0, 10.0, 10.0,

10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 0.1). The comparison of the four
methodologies was done by evaluating the number of cycles re-
quired to converge (number of approximate minimizations)and the
total number of CA calls required. The number of approximatemini-
mizationsindicateshow the AED will impactthe quality of the RSA.
However, to evaluate the cost of the optimization, the number of CA
calls is more important because each CA can be computationally
expensive.

The number of approximate minimizations is shown in Fig. 7.
There is no significant change in the number of approximate mini-
mizations required to converge the SAO. The CH strategy with the
OA(27) required more than 35 iterations to converge. On the other
hand, using IT with OA(36) required the least number of approx-
imate minimizations. We have to highlight that, contrary to what
was expected, for the IT, the use of greater number of design points
increased the number of approximate minimizations. This means
more points did not increase the quality of the approximation and
reduce the number of approximate minimizations. The results, in
general, illustrate that an order O(n) update for this problem works
well without effecting the overall performance of the optimization.

Figure 8 shows the results for the total cost of the optimization.
One has to compare the cost of each run with the total cost of using
an FH update. An overall decrease of up to 35% in the total number
of CA calls required to converge can be seen. It is important to
remember that no special heuristic,other than a negative trustregion
ratio, was used to decide when to perform an FH update. Thus, a
further reduction could be possible with a more elaborated update
criterion.

The second starting design point, P, =(5.0, 5.0, 5.0, 5.0, 5.0,
5.0,5.0,5.0,5.0,5.0,0.1) is infeasible. Results are shown in Figs. 9
and 10. For each OA, the IT required more iterations to converge
than the CH, except in the case of OA(128). The savings in the
number of CA calls are more significant for this starting point.

40
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Fig.7 Startingfrom a feasible point,approximateminimizations, CAS
problem.
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Fig. 8 Starting from a feasible point, CA calls, CAS problem.
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Fig. 9 Starting from an infeasible point, approximate minimizations,
CAS problem.
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Fig. 10 Starting from an infeasible point, CA calls, CAS problem.

The smallest number of calls is required when using the OA(27);
however, OA(36) and OA(50) do not significantly increase the num-
ber of CA calls required for SAO convergence.

VI. Conclusions

In this paper, a methodology that treats the curse of dimension-
ality by reducing the size of the database required for building a
quadratic RSA is presented. The method, named AED, makes use
of a canonical transformationof the preceding FH matrix to capture
the geometric information. The AED only requires computation of
the MD terms in the transformed space, therebyreducing the amount
of datarequired to build a quadratic approximation. Two variants of
the methodology are presented. In one, called the individual trans-
formation method, the transformationis applied individually to the
objective function and each of the constraints. An alternate method
that computes the CH of the augmented Lagrangian and uses it
to define the transformationis also presented. The methodology is
appliedto three test problems. The results are compared to those ob-
tainedby fitting the FH matrix ateachiteration. Results show thatthe
methodology can be applied to engineering problems, significantly
reducing the amount of data required to fit a full quadratic function
without an increase in the number of optimization iterations.

In a simple unconstrained example problem, the use of the pro-
posed AED outperformed significantly the use of a Hessian with
neglected off-diagonal terms. A fully constrained problem and an
MDO problem showed an importantreductionin the total cost of the
optimization. The reduction is expected to increase with the num-
ber of design variablesin the problem because the AED reduces the
number of parameters to be fitted from O(1n?) to O(n) for most of
the iterations. No significant difference has been observed between
the two decomposition strategies IT and CH. Future research will
focus on generating a full-order reduction in the required database
for all iterations in the SAO process.

Appendix: Coefficients for the Barnes Problem

Table A1 Coefficients and their
values for the Barnes problem’

Coefficient Value
aj 75.196
a —3.8112
as 0.12694
ay —2.0567¢—3
as 1.0345¢—-5
ag —6.8306
ay 0.030234
ag —1.28134¢—3
ag 3.5256e—5
ao —2.266e—17
ap 0.25645
an —3.4604¢—3
as 1.3514e—5
aig —28.106
als —5.2375¢—6
ale —6.3¢—8
a7 7.0e—10
ag 3.4054e—4
alg —1.6638¢—6
ano —2.8673
asy 0.0005
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