
AIAA JOURNAL

Vol. 40, No. 12, December 2002

Adaptive Experimental Design for Construction
of Response Surface Approximations
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Sequential approximate optimization (SAO) is a class of methods available for the multidisciplinary design op-
timization of complex systems that are composed of several disciplines coupled together. One of the approaches
used for SAO is based on a quadratic response surface approximation,where zero- and � rst-order information are
required at the current design. In this method,designers mustgenerate and query a databaseof order O(n2 ) to com-
pute the second-order terms of the quadratic response surface approximation.As the number of design variables
grows, the computational cost of generating the required database becomes a concern. An adaptive experimental
design (AED) approach that requires just O(n) parameters for constructing a second-order approximation is pre-
sented. This is accomplished by transforming the matrix of second-order terms into the canonical form. The AED
method periodically requires an order O(n2) update of the second-order approximation to maintain accuracy.
Results show that the proposed approach dramatically reduces the total number of calls to the simulation tools
during the SAO process.

Nomenclature
f = objective function
Qf k = approximation to f near xk

g = inequality constraint vector
gi = i th inequality constraint
Qgk = approximation to g near xk

H. / = Hessian matrix of . /
r = penalty parameter
U = orthogonal eigenvectormatrix
U s = transformed design space
x = vector of design variables
xk = current design point at kth iteration
1 = trust region radius
¸ = vector of Lagrange multipliers
½ = trust region ratio
8 = augmented Lagrangian function
9i = alternative form for inequality constraint gi

I. Introduction

A PPLYING nonlinear optimization strategies directly to com-
plex multidisciplinary systems can be prohibitive when the

complexity of the simulation codes is large. Increasingly, response
surface approximations (RSAs), or surrogate functions, are being
integrated with nonlinear optimizers to reduce the CPU time re-
quired for the optimization of complex multidisciplinary systems.
RSAs provide a computationally inexpensive lower-� delity repre-
sentation of the system performance.

Two trends have emerged when integrating RSAs within nonlin-
ear optimization tools: 1) the use of global approximations, where
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an RSA over the entire design space is developed, and 2) the use
of local approximations, where RSAs are built within a local re-
gion around the current design. In general, a single optimization
is performed when employing global approximations. The cost of
developinga good globalRSA is obviouslyhigher than for local ap-
proximations because a more complex model is required to mimic
the system. When using local RSAs, a sequentialapproximateopti-
mization (SAO) methodologycan be used. In SAO, the designspace
is sampled around each design iterate to generate the database re-
quired for constructing a low-order polynomial using regression
analysis.1

The authors have investigated two different approaches for sam-
pling the design space in SAO frameworks.The � rst is an optimiza-
tion based sampling,which has roots in the original concurrentsub-
spaceoptimization(CSSO) algorithmof Sobieszczanski-Sobieski.2

It was later modi� ed for RSA optimization (CSSO-RS) by Renaud
and Gabriele3;4 and Wujek et al.5 and expanded to a formal frame-
work for trust region model managementby Rodr‡́guez et al.6 In this
approach,each of the disciplinesperform an optimizationsubject to
move limits. The required inputs from other systems are computed
by linear approximations.The designpointsvisited throughthe sub-
spaceoptimizationsare storedand serve as the databasefor the RSA
construction. The other approach is a statistically based sampling
using design of experiments (DOE) arrays as reportedby Rodr‡́guez
et al.7;8 At each SAO iteration, a set of design points is selected for
sampling using a DOE array. The design points are evaluated using
the local disciplinarydesign tools, where linear approximationsare
used for the nonlocal input states. The resulting database is used
to build an RSA. Many other research studies have combined DOE
techniques and RSA for optimization.9¡13

Rodr‡́guez et al.8 performed a comparison between the
optimization-based data generation (CSSO-RS) and a statistical
based DOE approach using orthogonal arrays (OA). Results of that
study show that, whereas low-strength OAs seem to perform well
compared to the CSSO-RS approach, the CSSO-RS approach is
still more robust in driving the optimization. An attempt to over-
come the natural advantages of the optimization-based sampling
was investigated in Pérez et al.14 In the Pérez et al. study, the
DOE-based sampling strategy was modi� ed by projecting the OAs
onto the linearized descent feasible region. There is evidence that
the RSA constructed with such a database provides a better ap-
proximation of the system when constrained optimization is per-
formed. One common goal of these studies is the reduction of
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computational cost when an optimization problem is solved using
SAO.

In the SAO implementation studied by the authors, a quadratic
function is computed at each iteration to mimic the response of the
system. The main drawback of using SAO for problems with more
than a few design variables is that the size of the database required
to compute the coef� cients of the polynomial grows quadratically
with the number of design variables. In this paper, a methodology is
presented that requires the user to performa much smaller sampling
at each iteration by � tting a reduced model during some iterations.
The methodology has been named adaptive experimental design
(AED).

The organizationof the paper is as follows: In Sec. II, the basics
of SAO are presented. Section III describes in detail the proposed
methodology. A full description of the algorithm is presented in
Sec. IV. Test problems and their correspondingresultsare presented
in Sec. V and concluding remarks in Sec. VI.

II. SAO
The SAO framework solves a constrained optimization problem

of the following form:
Minimize

f .x/ (1a)

subject to

g.x/ ¸ 0 (1b)

h.x/ D 0 (1c)

xmin · x · xmax (1d)

The main idea of the SAO is to build simple RSAs of the objec-
tive function and constraints,valid for a local region. An optimiza-
tion is performed over this approximation within the local limits.
The approximation is updated every iteration until convergence is
achieved.

The algorithm begins at iteration k D 0 with a starting point xk .
The objective function, constraints, and their gradients are evalu-
ated in the design characterizationstep. Then local move limits are
de� ned. The move limits de� ne the region where the approximation
will be valid. Within these move limits, a database is constructed.
Once an RSA is constructed using the information in the database,
an optimization is performed with the approximations. The new
candidate point is evaluated and either accepted or rejected based
on a trust region test. After this, new move limits are set, and the
optimization proceeds. A � owchart of the general SAO is shown in
Fig. 1.

In the SAO strategies of Wujek and Renaud15;16 and Rodr‡́guez
et al.,6;7 which were modi� ed for DOE-based sampling by
Rodr‡́guez et al.,8 Pérez et al.,14 and Pérez and Renaud,17 the frame-
work constructs second-order RSAs of the objective function and

Fig. 1 SAO algorithm.

constraintswithin a local trust region. The approximationsare con-
structed using exact � rst-order information at the current design
point. Therefore, the work of constructing a response surface (RS)
involves only the � tting of the second-order terms, which are re-
ferred to as the Hessian-RS matrix H , or simply the Hessian.

Alexandrov et al.18 proved the convergenceof a SAO framework
in which the move limits are managed by a trust region approach,
and the local approximation matches the function and the gradient
at the current design point. The trust region augmented Lagrangian
framework implemented in this study has these characteristicsand
has been proven to converge by Rodr‡́guez et al.6 This framework
uses an augmented Lagrangian approach for driving the optimiza-
tion and a trust region methodology to manage the move limits.

In the present research, the trust region augmented Lagrangian
framework of Rodr‡́guez et al.6 is implemented. A more detailed
descriptionof the RSA, the trust region approach, and the database
generation used in this study is presented in the following sections.

A. RSA
The quadratic function approximationused in the framework for

f at the kth iteration is given by

Qf k.x/ D f .xk/ C r f .xk/T 1xk C 1
2 1xkHk

f 1xk (2)

where 1xk D x ¡ xk . Both f .xk / and r f .xk/ are known, and only
the second-order informationHk

f is computed using a response sur-
face approach. Gradient information can be obtained in analytical
formprovidedby theuser,or computedvia � nitedifferencesorusing
the global sensitivity equations19 in the case of a multidisciplinary
design optimization (MDO) problem.

Note here the difference between the true Hessian of the func-
tion and the Hessian-RS of the approximation Qf k , denoted here as
Hk

f . The true Hessian is the second-order information evaluated at
a given design point, in this case xk . The Hessian-RS, or simply
Hessian, as it is referred to in this paper, is the Hessian matrix of
a quadratic approximation of the function in the local region. The
true Hessian is never computed nor used in this SAO framework. It
is too expensive to compute by � nite differencesand assumed to be
dif� cult to obtain in analytical form. Whenever Hessian is used in
this paper, it refers to the matrix of second-order coef� cients in the
quadratic approximation.

The total number of coef� cients in a full second-order model
is 1 C n C n.n C 1/=2. However, in the quadratic model considered
here, zero- and � rst-order information are known; therefore, the
number of coef� cients in Hk

f is n.n C 1/=2, where n is the num-
ber of design variables in the problem. The minimum size of the
database required to compute the approximate model (2) is, there-
fore, n.n C 1/=2 or O.n2/ in general terms. The coef� cients in the
Hessian matrix are computed using the least-squaresmethod.

The least-squaresmethod assumes an independentand normally
distributed error in the model to be � tted. This is debatably true
for computer experiments. Sacks et al.20 points out that in the ab-
sence of independent random errors, the rationale for least-squares
� tting of an RS is not clear. However, he also indicates that least
squares can be viewed as curve � tting. Simpson et al.13 also under-
lines that, in deterministic computer experiments, the model should
interpolate and not smooth along the data points. However, in real-
istic MDO applications, the analysis values are, in fact, noisy, and
so least-squares � tting is more appropriate than interpolation. In
this particular application, the quadratic model is used in the curve
� tting sense, within a local region controlled by the trust region
methodology. The general trend is captured by the approximation.
When approachingconvergence,the trust region method guarantees
the adequacy of the quadratic model by shrinking the move limits.
Furthermore, if variable � delity data are used,8 smoothing along
the data points is a necessity. Other methods have been proposed
to compute the coef� cients of an RS, such as the minimum bias
estimation method (see Myers and Montgomery1).

B. Trust Region Methodology
The trust region approach15;16;18;21¡23 is based on the use of a

trust region ratio ½ to monitor how well the current approximation
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is found to represent the actual design space. Consider an uncon-
strained optimization problem in which QÁk is an approximation to
the functionÁ aroundthe pointxk at the kth iteration.The move lim-
its are de� ned by the region kx ¡ xk kp · 1k and the p norm de� nes
the shape of the region. 1k is known as the trust region radius.

The minimization of QÁk subject to the de� ned trust region gives
a new candidate point xk C 1

¤ . The trust region ratio ½ is computed
based on the information of the new candidate point:

½k D
Á.xk / ¡ Á

¡
xk C 1

¤

¢

QÁk .xk/ ¡ QÁk
¡
xk C 1

¤
¢ (3)

The quantity½ is simply the ratio of the actual change in the function
to the change predicted by the approximation.The closer the value
of ½ is to one, the better the approximation QÁk mimics the behavior
in the descent direction of Á. The approximateminimization forces
QÁk.xk C 1

¤ / · QÁk.xk /. A negative ½ indicates a poor approximation,
and the new point does not decrease the function; therefore, the
point is rejected and the trust region radius reduced. If the value
of ½ is greater than zero, the point is kept: xk C 1 D xk C 1

¤ . The trust
region radius 1 is updated according to the following rules:

1k C 1 D

8
<

:

c11
k if ½k < R1

c21
k if ½k > R2

1k otherwise (4)

Typical values for the limiting range constants are R1 D 0:25 and
R2 D 0:75. The trust regionmultiplicationfactorsc1 and c2 are com-
monly set to be 0.25 and 2, respectively.

C. Database Generation
In SAO, at every iterationa new databaseis computed.The points

to be evaluated can be generated using an optimization based sam-
pling as in Refs. 4, 6, 15, and 16 or using more traditional DOE
strategies as in Refs. 7, 8, 14, and 17. Each design point that is sam-
pled can be evaluated by computing the system analysis (SA). In
the case of multidisciplinaryoptimizationproblems,one could sam-
ple the linearly decoupled simulationcodes or contributinganalysis
(CAs), as in Refs. 8 and 14, generating variable � delity data.

Several techniques have been developed to sample the design
space and generate an RSA ef� ciently. Among the common tech-
niques to generate an experimental design are the traditional DOE
arrays,such as full factorialexperiments(FF), centralcompositede-
signs (CCD), fractional factorials,1 Latin hypercubes and their ex-
tensions(see, for example,McKayet al.24 andTang25), andOAs.26;27

Some quality improvement computations such as D-optimality28;29

are too large or too complex for an SAO framework. OAs are an
excellent choice for computer experiments because they are easy
to generate. Owen26 has compiled a suite of programs to gener-
ate a broad class of OAs for different levels and numbers of design
variables.In the constructionof RSAs for MDO, one importantcon-
sideration is the dimensionality of the problem, where large prob-
lems may impose the curse of dimensionality.Small problems can
be easily dealt with by traditional sampling techniques (FF, CCD).
However, as the number of variables increases, the size of the sam-
pling does too. In the case of a second-order RSA, the number of
the parameters to be � tted is O.n2/. FF and CCD generate design
arrays with O.2n/, whereas some OAs have O.n2/ or even O.n/. In
this paper, OAs have been chosen as experimental arrays.

III. AED
The most important difference, from an experimental point of

view, between traditional laboratory experiments and the compu-
tational experiments embedded in SAO, is that in the latter the
experiment is repeated several times at different locations, up to
convergenceor stopping of the algorithm. At each new iteration, a
new sampling is performed of the same system, but in a new sam-
pling region. However, at each new iteration one is not completely
blind to the behavior of the system because the earlier information
about the natureof the RS, and the � tted coef� cientsof thepreceding
local approximation,are available. Because of the highly nonlinear
nature of MDO problems, the design space is not expected to have

the same responsefrom the startingsamplingregion to the � nal one,
and, therefore, the performance of a � xed experimental array may
vary through the process.This was acknowledged in the researchof
Rodr‡́guez et al.,8 where the OAs were randomized to avoid having
a � xed experimental array not capturing the true interactions of the
design variables.

The main drawback for SAO is the size of the database required
to construct the quadratic approximation. The number of para-
meters needed to � t a full second-order approximation is O.n2/.
This problem is referred to as the aforementioned curse of dimen-
sionality. An AED that takes advantageof the information from the
precedinglocal approximation to modify the size of the experimen-
tal array required for the next sampling appears to hold promise for
improving the ef� ciency of SAO algorithms. In this paper, infor-
mation already available from the preceding approximation is used
to reduce the size of the data required to construct a full quadratic
model, while maintaining the quality of the approximation. As a
result, the total cost of the optimization is reduced.

A reduction in the cost of the optimizationcan be obtained if, for
some iterations, instead of an O.n2/ sampling, only an O.n/ sam-
pling is performed.This can be done by neglecting the off-diagonal
terms in the Hessian matrix Hk

f . Although this certainly reduces the
order of data to be queried to O.n/, the quality of the approxima-
tion might decrease considerably. These neglected terms could be
an important componentof the second-orderinformation,and, thus,
it would end up being a poor representationof the system response.

A differentapproachis proposedin thispaper.Once the fullmatrix
of second-orderterms is approximatedfora givendesignpoint,it can
be transformedinto its canonicalform. In the canonicalcoordinates,
the off-diagonalcomponentsof the Hessian vanish.Once the canon-
ical transformationmatrix has beenfound, it can be assumed,at least
for some numberof iterations,that the curvatureof the functionwill
be invariant, and so the transformationmatrix is kept. In the next it-
erations, in the transformed design space, only the main diagonalof
the second-ordermatrix is � tted [O.n/ sampling]. As a result, back
in the original space, a full matrix is obtained. The transformation
matrix can be kept as long as the curvature of the function does not
change too much. In that case, the full matrix of second-orderterms
has to be updated, and a new transformation matrix is computed.
This technique is referred to as the AED mentioned earlier.

In the following section, a detailed description of the AED ap-
proach is presented.

A. Proposed Methodology
Let us assume that a single function f is being approximated.

The quadratic approximation at the kth iteration is represented by
Eq. (12). The matrix of second-order terms Hk

f is symmetric and,
hence, similar to a real diagonal matrix via an orthogonal transfor-
mation matrix, whose columns are orthonormal eigenvectors. The
eigenvalue decompositionof the Hessian matrix is de� ned as

Hk
f D Uk

f D
k
f U

k
f

T
(5)

The matrix of normalizedeigenvectorsUk
f de� nes a changeof coor-

dinates,whereas the diagonal matrix of real eigenvaluesDk
f de� nes

the magnitudeof the curvaturealong the new coordinatedirections.
This transformation and its signi� cance is illustrated in Fig. 2.

With Uk
f as the transformationmatrix, the design variables x can

be transformed to the canonical variables xU . The canonical form
of the quadratic approximation is

Qf k
U .xU / D fU

¡
xk

U

¢
C r f T

U

¡
xk

U

¢
1xk

U C 1
2 1xk

U
T Dk

f 1xk
U (6)

where

xk
U D Uk

f
T
xk (7)

1xk
U D xU ¡ xk

U (8)

fU .xU / D f
¡
Uk

f xU

¢
(9)

r fU .xU / D Uk
f

T r f .x/ (10)
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Fig. 2 Transformation to canonical form.

Now assume that a full Hessian is known for a preceding nearby
iteration s, s < k. Its correspondingeigenvectormatrix is Us

f . If the
points x k and x s are close enough, it is safe to assume that Uk

f and
Us

f are similar. Therefore, to compute the Hessian matrix Hk
f , one

needonlycalculatethe eigenvaluematrixDk
f by samplingthe design

space with an O.n/ experimental array. This experimental array is
sampledin theoriginalspace.Then thedatabaseis transformedto the
canonical space U s , where the eigenvalue matrix Dk

f is computed.
Finally, a backtransformationreturns the new full Hessian matrix in
the original space:

Hk
f D Us

f D
k
f U

s
f

T (11)

The eigenvectormatrix Us
f can be used for several iterations.If at

any point the approximation is bad, then a new eigenvector matrix
is computed. This is done by constructing a full Hessian using an
O.n2/ experimentalarray (EA). In this paper, the criterion for a bad
approximation is a failure in the trust region test as described in
Sec. II.B. The trust region test fails when the new candidate point
increases the value of the function. The bad approximation can be
a result of a trust region being too large or a bad model. Therefore,
a trust region reductionplus a transformationmatrix update have to
be performed.

In summary, the user requires two EAs one with l1 ¸ n.n C 1/=2
[O.n2/] design points and one with l2 ¸ n[O.n/] design points. At
the � rst iteration, the local design space de� ned by the trust re-
gion is sampled using the O.n2/ EA. A full Hessian is approxi-
mated and its eigenvector matrix stored. For subsequent iterations
the local design space is sampled using the O.n/ EA. By the use
of the AED technique described earlier, a full Hessian matrix can
be approximated. When the trust region test fails (½k < 0), then
the algorithm resets the transformation matrix by sampling the
O.n2/ EA.

B. Practical Implementation
In MDO, it is common to have several constraints in the for-

mulation of a problem. The objective function and the constraints
are often functions of the outputs of coupled simulation codes, and,
thus,RSAs areused to approximatethem. A directapplicationof the
methodology just described, in a problem with m constraints, im-
plies that m C 1 least-squares estimations would have to be solved.
For each function, an eigenvalue decompositionof its Hessian ma-
trix, an individualdatabase transformation,and a least-squaresesti-
mation would have to beperformed.We refer to this as the individual
transformation (IT) method.

It is common in SAO frameworks for the optimization to be per-
formed over an unconstrainedaugmentedLagrangian,with variable
bounds. In this case, one need only approximate the augmented
Lagrangian, and, therefore, only a single transformation matrix is
required. This method, referred to as the cumulative Hessian ap-
proach, requires that the Hessian of the augmented Lagrangian be
derived from the functions approximations.

In the SAO framework employed in this research, the objective
function and each of the constraints are approximated by second-

order Taylor series. De� ne the approximate objective function and
constraintsby

Qf k .x/ D f .xk / C r f .xk/T 1xk C 1
2 1xk T Hk

f 1xk (12)

Qgk
i .x/ D gi .xk / C rgi .xk/T 1xk C 1

2
1xk T Hk

gi
1xk (13)

To simplify the derivation, only inequality constraints are included
in this paper; however, the extension to include equality constrains
is straightforward.The approximate augmented Lagrangian is

Q8k D Qf k C ¸T Q9k C r Q9k T Q9k (14)

where

Q9k
i D min

£
Qgk
i ; ¡2.¸i =r /

¤
(15)

is provably continuously differentiable (C1). We are interested in
the matrix of second-order terms Hk

Q8
in the Taylor series expansion

of Q8k :

Q8k .x/ D Q8k.xk / C r Q8k.xk/T 1xk C 1
2
1xk T Hk

Q8
1xk C O.k1xkk3/

(16)

The reader should keep in mind that Hessian coef� cients are esti-
mated using RS techniques that � t the second-order response over
the entire trust region. SubstitutingEqs. (12) and (13) into Eq. (14)
and matching the order of the terms, one obtains

Hk
Q8

D Hk
f C

X

i

¸i Hk
Q9i

C 2r
X

i

±
r Q9k

i r Q9k
i

T C Q9k
i Hk

Q9i

²
(17)

Note that the expression for Hk
Q8

contains both � rst- and second-
order terms. The � rst- and second- order terms can be combined
into single terms

Hk
Q8

D Hk
Q8

A C Hk
Q8

B
(18)

where

Hk
Q8

A D 2r
X

i

r Q9k
i r Q9 k T

i (19)

Hk
Q8

B D Hk
f C

X

i

¡
¸i C 2r Q9k

i

¢
Hk

Q9i
(20)

Hk
Q8

A
is known because it is computed by � rst-order informa-

tion only, which is already available. The matrix Hk
Q8

B
is a linear

combination of the objective function and constraint Hessians. If
the eigenvector matrix of Hk

Q8
B

is known, there is no need to com-
pute the individual off-diagonal terms of the objective function and
constraints. They will cancel with each other in the transformed
space. Therefore, one can use the eigenvector matrix Us

Q8
B of Hs

Q8
B

as a unique transformationmatrix.Then � t in the transformedspace
the main diagonals of all of the Hessian matrices of f and g as de-
scribed in Sec. III.A. This approachis called the cumulativeHessian
(CH) method.

Note that although the function Q9k
i is not C2 , one can assume, in

practice, that for an active constraint Qgi < ¡2¸i =r and Hk
Q9i

D Hk
gi

,
and, for an inactive constraint,Hk

Q9i
D 0.

IV. Algorithm Description
The modi� ed SAO using the AED methodologyproposed is pre-

sented in Fig. 3. For simplicity, the algorithm mentions a single
function to be approximated; however, it is equally applicable to a
fully constrained problem using one of the techniques described in
Sec. III.B.

Given a starting point x0, set k :D 0:
1) Compute f .xk / and r f .xk /.
2) Initialize the trust region.
3) Sample the local design space using an O.n2/ EA.
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Fig. 3 SAO with AED.

4) Compute an approximation for the full Hessian matrix Hk
f .

5) Compute the transformation matrix Uk
f as in Eq. (5).

Set s :D k.
6) Optimize the approximate augmented Lagrangian within the

local trust region. Find a new candidate point xk C 1
¤ .

7) Compute f .xk C 1
¤ / and r f .xk C 1

¤ /.
8) Compute the trust region ratio ½ .
9) If ½ < 0, go to 10; otherwise, go to 11.
10) Reject xk C 1

¤ , update the trust region according to Eq. (4), and
go to 3.

11) Set xk C 1 :D xk C 1
¤ and k :D k C 1.

12) If algorithm convergence is achieved, stop; otherwise con-
tinue.

13) Update the trust region according to Eq. (4).
14) Sample the local design space using the O.n/ experimental

design.
15) By the use of Us

f , transform the database and the gradient
information according to Eqs. (7) and (10).

16) In the transformed space(s) U s , compute the diagonal matrix
Dk

f using the least-squaresmethodology.
17) Transform the diagonal Hessian approximationDk

f back to a
full Hessian matrix Hk

f using Eq. (11).
18) Update the r and ¸i in Eq. (14) as in Refs. 6 and 7, and go

to 6.

V. Test Problems
To demonstrate the application of the decomposition technique

within a SAO framework, three problems are shown. First a sim-
ple two-dimensional unconstrained problem is tested. Next, a two-
dimensional constrained mathematical problem is tested. Finally,
the strategy is applied to a two-discipline MDO test problem with
11 design variables.The complete implementationof the algorithm
and test problems was done in MATLAB®. MATLAB’s SQP opti-
mizer was used to perform the approximate minimization at each
iteration.

A. Optimization of an Unconstrained Function
A simple unconstrainedminimizationproblemin two dimensions

is used to show how dramatic the results can be:
Minimize

f .x/ D 3 C .x1 ¡ 40/ C 2.x2 ¡ 40/ C 0:75.x1 ¡ 40/2

C 0:75.x2 ¡ 40/2 C 0:5.x1 ¡ 40/.x2 ¡ 40/ C 0:002x2
1 x2 (21)

The optimum is located in x¤ D (36.2564,38.1618).A simple SAO,
with a � xed trust region radius, was performed using three methods

to build the Hessian approximation: a full Hessian � t, the trans-
formation method stated earlier, and � tting just the main diagonal
without transformation. In the � rst two cases, the optimum was
located in three iterations, starting from a nearby point. However,
when � tting just the main diagonal, the algorithmrequirednine iter-
ations to reach the optimum with a toleranceof 0.01.With a smaller
tolerance (0.0001) it required more than 300 iterations to converge
as compared to three for the full Hessian and the transformation
method investigated in this paper.

Although actual engineering problems are more complex and
restrictive than this unconstrained problem, it does illustrate the
potential of the proposed method. The additional examples given
hereafter represent more complex constrained problems that are
closer to real engineering problems.

B. Barnes Problem
This is a purely arti� cial, two-dimensional problem originally

formulated in Ref. 30. This problem was chosen because it is a
highlynonlineartwo-designvariableproblem.The problemis stated
as follows:

Minimize

f .x; y/ D a1 C a2x1 C a3 y4x1 C a5 y2
4 C a6x2 C a7 y1 C a8x1 y1

C a9 y1 y4 C a10 y2 y4 C a11 y3 C a12x2 y3 C a13 y2
3

C a14=.x2 C 1/ C a15 y3 y4 C a16 y1 y4x2 C a17 y1 y3 y4

C a18x1 y3 C a19 y1 y3 C a20ea21 y1 (22a)

subject to

g1 D y1=700 ¡ 1 ¸ 0; g2 D x2=5 ¡ y4

¯
252 ¸ 0

g3 D .y5 ¡ 1/2 ¡ .x1=500 ¡ 0:11/ ¸ 0

0:0 · x1 · 75:0; 0:0 · x2 · 65:0 (22b)

where the coef� cients a are constants given in Table A1 in the
Appendix. The states y are calculated by the CAs as follows: For
CA1

y1 D x1x2; y3 D x2
2

for CA2

y2 D y1x1; y4 D x2
1 ; y5 D x2=50

Figure 4 is a plot of the constraints and objective functioncontours.

1. Implementation Details
Two iterations of SAO were performed starting from several de-

sign points. In the � rst iteration, a full Hessian was � tted for the

Fig. 4 Contours of f and gi for the Barnes problem.
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objective function and for each of the constraints. A new candidate
point was found by solving a minimization over the approximate
augmented Lagrangian.

In the second iteration, a new database was generated around the
current design point. With this database, the Hessian matrix was
computed using the following methods:

1) Estimate the full Hessian matrix (FH).
2) Estimate only the main diagonal (MD) terms of the Hessian

without transformations in the original design space.
3) Estimate the MD in the transformed space.

a) Use one transformationmatrix for each individual function
involved (IT). The Hessian of each function is estimated in its trans-
formed space.

b) Use one transformation matrix from the CH of the La-
grangian.The eigenvectormatrix of the CH as in Eq. (20) is used to
transform the design space. The MDs of each Hessianare computed
in this transformed design space.

Once the Hessian information was estimated, an optimization
was performed using each of the four approximations computed.
The database for all approximations was generated by sampling
with a 9-point, 3-level, FF array. The database was queried within
the limits of the local variable bounds de� ned as a fraction of the
whole design space by the trust region radius 1.

To estimate the error of each approximation,a new database was
queried. The mean square error (MSE) of what was computing by
comparing the real value of the augmented Lagrangian to that ob-
tained by the approximations[Eq. (14)].

2. Results for the Barnes Problem
The results for two initial design points are given in this section.

The � rst run started with point P1 D .7; 35/, which is an infeasible
startingpoint that violates constraint1. The sampling and optimiza-
tion were performed with a trust region radius of 1 D 0:1. Table 1
summarizes the results for each strategy used to � t the Hessian. In
SAO, theoptimizationis performedwith theaugmentedLagrangian;
therefore, the results are focused on the ability to capture the value
of the Hessian matrix of the cumulative augmented Lagrangian as
in Eq. (20).

The � rst three columns denote the Hessian terms of the cumu-
lative augmented Lagrangian: x2

1 , x2
2 , and x1x2 . We can see that,

whereas the MD approach perfectly � ts the x2
1 , x2

2 terms, the cross
term is not captured, although it has a somewhat negligible value.
The individual transformation and the CH strategies capture, with
an acceptable accuracy, the MD and off-diagonal terms. The small
discrepancy in the results between the IT and the CH methods are
due to the constraintviolation;however, the difference is not signif-
icant. The next two columns show the � nal result for the two-step
optimization:x¤

1 , x¤
2 . The � nal design is the same in all cases. When

comparing the MSE of the four RSAs, it can be seen that the MD ap-
proach generates a greater error (10 times greater) than those of the
individual transformation and the CH transformation. The magni-
tude of the MSE for the two transformationmethods is comparable
to that of the FH � t.

In the next run, the size of the trust region radius was increased to
1 D 0:3, and the same starting point was used. Figure 5 shows the
shape contours of the original augmented Lagrangian and the four
approximations. We can see that a slight change in shape is found
in the MD approach; however, the minimum for the � ve plots is
located in the lower right corner [x¤ D (18.625, 24.925)] of Fig. 5.

Results for the Hessian terms are found in Table 2. The maxi-
mum difference in Hessian terms is found in the off-diagonal terms
because the MD approach does not compute them. The MSE shows
a very small difference between the FH, IT, and CH. The MSE for

Table 1 Point (7, 35), D = 0:1

Method x2
1 x2

2 x1x2 x¤
1 x¤

2 MSE

FH 0.1141 ¡0.0112 0.0254 11.125 31.425 1.2615e¡3
MD 0.1141 ¡0.0112 0 11.125 31.425 1.4201e¡2
IT 0.1145 ¡0.0118 0.0251 11.125 31.425 1.2631e¡3
CH 0.1145 ¡0.0117 0.0251 11.125 31.425 1.3205e¡3

Table 2 Point (7, 35), D = 0:3

Method x2
1 x2

2 x1x2 x¤
1 x¤

2 MSE

FH 0.1143 ¡0.0095 0.0282 18.625 24.925 0.8933
MD 0.1143 ¡0.0095 0 18.625 24.925 2.0462
IT 0.1173 ¡0.0138 0.0261 18.625 24.925 0.8989
CH 0.1172 ¡0.0137 0.0261 18.625 24.925 0.9115

Table 3 Point (45, 20), D = 0.1

Method x2
1 x2

2 x1 x2 x¤
1 x¤

2 MSE

FH ¡0.0318 0.1549 0.0262 49.125 16.425 9.3201e¡04
MD ¡0.0318 0.1549 0 49.125 16.425 1.3077e¡02
IT ¡0.0316 0.1546 0.0264 49.125 16.425 9.3323e¡04
CH ¡0.0316 0.1546 0.0264 49.125 16.425 9.3323e¡04

Fig. 5 Augmented Lagrangian for point (7; 35), D = 0.3.

Fig. 6 Controls-augmented structure.

the MD approach is more than twice the value of the other three.
However, the four strategies end up at the same optimum.

The second point evaluated is P2 D (45, 20), which is located
near the global optimum. A trust region radius of 1 D 0:1 is used in
the same two-iteration study. At this design point, no constraint is
violated, but it is close to the feasible design boundaries of g1 and
g2. Results for this point are shown in Table 3. Results for IT and CH
are the same because no constraint is being violated and, therefore,
the augmentedLagrangian is reduced to the objective function. (We
are performing a two-step SAO. The Lagrangian multipliers are
initialized to zero.) The MSE for the MD strategy is two orders
of magnitude greater than the other three approaches;however, the
optimum with respect to the local variablebounds is found to be the
same for each of the approximations.

C. Controls-Augmented Structure
In this section,an engineeringdesignoptimizationproblemcalled

the controls-augmented structure (CAS) is detailed. This problem
introducesmore complexity with more design variables, more con-
straints, and a fully coupled SA. One important feature of this prob-
lem is thatthedataused to constructtheRSAs come fromthe linearly
decoupled subsystems (CAs), instead of the costly SA.

The CAS design problem shown in Fig. 6 was � rst introduced
by Sobieszczanski-Sobieski et al.31 The problem contains a total of
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11 design variables and 43 states. The physical problem consists
of a cantilever beam subjected to static loads along the beam and
to a dynamic excitation force applied at the free end. Two sets of
actuators are placed at the free end of the beam to control both the
lateral and rotational displacement.

The SA comprises two fully coupledCAs. The structuressubsys-
tem CAs consists of a � nite element model of the beam where the
natural frequenciesand modes of the cantileverbeam are computed.
CAs requires, in addition to the characteristics of the beam, the
weight of the control system as input. The weight of the control
system is calculated in the controls subsystem CAc. The weight of
the control system is a function of the dynamic displacements and
rotationsof the free end of the beam. These dynamic displacements
and rotationsare functionsof the natural frequenciesand modes ob-
tained in the structures CA, thus subjecting these CAs to coupling.

The objective of the optimization is to minimize the total weight
of the system Wt , comprising the weight of the beam Ws plus the
weight of the control system Wc . The minimization is subject to
seven constraints on the static stresses ¾ ; static lateral and rota-
tional displacements, dl and dr , respectively; the � rst two natural
frequencies!1 and !1; and dynamic lateral and rotational displace-
ments at the free end of the beam, ddl and ddr, respectively. The
problem is posed as follows:

Minimize
Wt D Ws C Wc

subject to

g1 D 1 ¡ dl

¯
dla ¸ 0; g2 D 1 ¡ dr

¯
dra ¸ 0

g3 D !1

¯
!1a ¡ 1 ¸ 0; g4 D !2

¯
!2a ¡ 1 ¸ 0

g5 D 1 ¡ ¾=¾a ¸ 0; g6 D 1 ¡ ddl

¯
ddla ¸ 0

g7 D 1 ¡ ddr

¯
ddra ¸ 0

1. Implementation Details
The trust region augmented Lagrangian framework for SAO de-

veloped by Rodr‡́guez et al.6;7 was implemented. The RSAs were
constructed with medium-� delity information queried by OAs of
strength two.8 This means that the sampling is performed over the
decoupled CAs instead of sampling the costly SA. At the begin-
ning of the optimization, FH approximationsof the functions were
computed. Transformation matrices were then computed for each
of the decompositionstrategiesdescribedearlier, that is, IT and CH.
When a negative trust region ratio was encountered, an FH update
was performed.

The problem has 11 design variables and, therefore, 66 Hessian
terms. When an FH update was required, an OA with 128 points,
8 levels,and strength2 was used.Whenonly the 11 MD components
were computed (either in the transformedor nontransformedspace)
smaller OAs were implemented. To asses the impact of the number
of design points in the array, four OAs with an increasingnumberof
design points were implemented:OA(27, 13, 3, 2), 27 designpoints,
13 design variables (2 were cut), 3 levels, strength 2; OA(36, 13,
3, 2), 36 design points, 13 design variables (2 were cut), 3 levels,
strength 2; OA(50, 11, 5, 2), 50 design points, 11 design variables,
5 levels, strength 2, and the same OA(128, 11, 8, 2) used for the
FH approximation. Note that an OA with more design variables
than needed can be used because OAs keep their properties when
factors are removed. In this case, a 13-design-variableOA is used
to make an 11-design-variablearray by ignoring two of its columns.
[OA(27, 13, 3, 2), OA(36, 13, 3, 2), and OA(50, 11, 5, 2) can be
found in Ref. 27. OA(128, 11, 8, 2) were generated using software
by Owen.26]

As described by Owen,26 one can randomize an OA to have dif-
ferent EAs. In this study, to avoid bias due to a particular EA from
the randomization of the OAs, 10 runs were performed for each
strategy and each OA. The results shown correspond to the average
results of the 10 runs.

2. Results for the CAS Problem
The optimization was performed starting from two different

points. The � rst is a feasible design X0 D .10:0, 10.0, 10.0, 10.0,

10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 0.1). The comparison of the four
methodologies was done by evaluating the number of cycles re-
quired to converge (number of approximateminimizations)and the
total numberof CA calls required.The numberof approximatemini-
mizationsindicateshow the AED will impact thequalityof theRSA.
However, to evaluate the cost of the optimization,the numberof CA
calls is more important because each CA can be computationally
expensive.

The number of approximate minimizations is shown in Fig. 7.
There is no signi� cant change in the number of approximate mini-
mizations required to converge the SAO. The CH strategy with the
OA(27) required more than 35 iterations to converge. On the other
hand, using IT with OA(36) required the least number of approx-
imate minimizations. We have to highlight that, contrary to what
was expected, for the IT, the use of greater number of design points
increased the number of approximate minimizations. This means
more points did not increase the quality of the approximation and
reduce the number of approximate minimizations. The results, in
general, illustrate that an order O.n/ update for this problem works
well without effecting the overall performance of the optimization.

Figure 8 shows the results for the total cost of the optimization.
One has to compare the cost of each run with the total cost of using
an FH update. An overall decrease of up to 35% in the total number
of CA calls required to converge can be seen. It is important to
remember that no specialheuristic,other than a negativetrust region
ratio, was used to decide when to perform an FH update. Thus, a
further reduction could be possible with a more elaborated update
criterion.

The second starting design point, P2 D .5:0, 5.0, 5.0, 5.0, 5.0,
5.0, 5.0, 5.0, 5.0, 5.0, 0.1) is infeasible.Results are shown in Figs. 9
and 10. For each OA, the IT required more iterations to converge
than the CH, except in the case of OA(128). The savings in the
number of CA calls are more signi� cant for this starting point.

Fig. 7 Starting from a feasible point, approximateminimizations,CAS
problem.

Fig. 8 Starting from a feasible point, CA calls, CAS problem.
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Fig. 9 Starting from an infeasible point, approximate minimizations,
CAS problem.

Fig. 10 Starting from an infeasible point, CA calls, CAS problem.

The smallest number of calls is required when using the OA(27);
however,OA(36) and OA(50) do not signi� cantly increasethe num-
ber of CA calls required for SAO convergence.

VI. Conclusions
In this paper, a methodology that treats the curse of dimension-

ality by reducing the size of the database required for building a
quadratic RSA is presented. The method, named AED, makes use
of a canonical transformationof the precedingFH matrix to capture
the geometric information. The AED only requires computation of
the MD terms in the transformedspace, therebyreducingtheamount
of data required to build a quadratic approximation.Two variants of
the methodology are presented. In one, called the individual trans-
formation method, the transformation is applied individually to the
objective function and each of the constraints. An alternate method
that computes the CH of the augmented Lagrangian and uses it
to de� ne the transformation is also presented. The methodology is
applied to three test problems.The resultsare compared to those ob-
tainedby � tting the FH matrixat each iteration.Results show that the
methodology can be applied to engineeringproblems, signi� cantly
reducing the amount of data required to � t a full quadratic function
without an increase in the number of optimization iterations.

In a simple unconstrained example problem, the use of the pro-
posed AED outperformed signi� cantly the use of a Hessian with
neglected off-diagonal terms. A fully constrained problem and an
MDO problemshowed an important reductionin the total cost of the
optimization. The reduction is expected to increase with the num-
ber of design variables in the problem because the AED reduces the
number of parameters to be � tted from O.n2/ to O.n/ for most of
the iterations.No signi� cant difference has been observed between
the two decomposition strategies IT and CH. Future research will
focus on generating a full-order reduction in the required database
for all iterations in the SAO process.

Appendix: Coef� cients for the Barnes Problem

Table A1 Coef� cients and their
values for the Barnes problem30

Coef� cient Value

a1 75.196
a2 ¡3.8112
a3 0.12694
a4 ¡2.0567e¡3
a5 1.0345e¡5
a6 ¡6.8306
a7 0.030234
a8 ¡1.28134e¡3
a9 3.5256e¡5
a10 ¡2.266e¡7
a11 0.25645
a12 ¡3.4604e¡3
a13 1.3514e¡5
a14 ¡28.106
a15 ¡5.2375e¡6
a16 ¡6.3e¡8
a17 7.0e¡10
a18 3.4054e¡4
a19 ¡1.6638e¡6
a20 ¡2.8673
a21 0.0005
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